MOF-derived CoP-nitrogen-doped carbon@NiFeP nanoflakes as an efficient and durable electrocatalyst with multiple catalytically active sites for OER, HER, ORR and rechargeable zinc-air batteries

E. Vijayakuma,S. Ramakrishnan, C. Sathiskumar,Dong Jin Yoo, J. Balamurugan,Hyun Sung Noh,Dawool Kwon,Young Hoon Kim,Haigun Lee

CHEMICAL ENGINEERING JOURNAL(2022)

引用 164|浏览22
暂无评分
摘要
Highly active, long-lasting, and low-cost nanostructured catalysts with efficient oxygen evolution and oxygen reduction reactions (OER and ORR) are critical for achieving high-performance zinc-air batteries. Herein, we developed CoP-nitrogen-doped carbon@NiFeP nanoflakes (CoP-NC@NFP), derived from MOF enriched with multiple active sites, for multifunctional water splitting and zinc-air battery applications. The experimental results revealed that the multiple active catalytic sites of CoP-NC@NFP were responsible for the excellent chargetransfer kinetics and electrocatalytic performance with respect to water splitting. This performance is comparable to that of precious metal catalysts in alkaline electrolytes (OER: overpotential of 270 mV; HER: overpotential of 162 mV; ORR: Tafel slope of 46 mV dec- 1; overall water splitting device: cell voltage of 1.57 V at 10 mA cm- 2) with excellent electrochemical durability. Additionally, the structural stability of the OER and the HER durability of the CoP-NC@NFP electrocatalyst were confirmed by transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) studies. Most impressively, zinc-air batteries (ZABs) assembled with CoP-NC@NFP as the air-cathode exhibit exceptionally high power density of 93 mW cm-2 and prolonged operational stability over 200 h compared with a ZAB equipped with a benchmark air-cathode. The outcome of this study opens a practical possibility for the preparation of efficient multifunctional catalysts free of noble metals for clean energy production and storage.
更多
查看译文
关键词
Metal organic framework, Transition metal phosphide, Water splitting, Oxygen reduction reaction, Zinc-air batteries
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要