Flattening of the Power Distribution in the HTGR Core with Structured Control Rods

Michal Gorkiewicz,Jerzy Cetnar

ENERGIES(2021)

引用 2|浏览1
暂无评分
摘要
Control rods (CRs) have a significant influence on reactor performance. Withdrawal of a control rod leaves a region of the core significantly changed due to lack of absorber, leading to increased fission rate and later to Xe135 buildup. In this paper, an innovative concept of structured control rods made of tungsten is studied. It is demonstrated that the radial division of control rods made of tungsten can effectively compensate for the reactivity loss during the irradiation cycle of high-temperature gas-cooled reactors (HTGRs) with a prismatic core while flattening the core power distribution. Implementation of the radial division of control rods enables an operator to reduce this effect in terms of axial power because the absorber is not completely removed from a reactor region, but its amount is reduced. The results obtained from the characteristic evolution of the reactor core for CRs with a structured design in the burnup calculation using the refined timestep scheme show a very stable core evolution with a reasonably low deviation of the power density and Xe135 concentration from the average values. It is very important that all the distributions improve with burnup.
更多
查看译文
关键词
HTGR core design, control rods, Xe135 oscillations, tungsten, MC burnup calculations
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要