Experimental and theoretical investigation of the formation of two-dimensional Fe silicate on Pd(111)

JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A(2021)

引用 2|浏览6
暂无评分
摘要
A single layer of Fe silicate was grown on Pd(111) and analyzed experimentally and theoretically. Following sequential deposition of SiO and Fe and annealing above 900 K in O-2, an incommensurate but well-ordered, low-defect density layer was observed with low-energy electron diffraction and scanning tunneling microscopy (STM). The STM images revealed a moire pattern due to the lattice mismatch between the relaxed oxide layer and the substrate, while high-resolution images showed a honeycomb structure consistent with a silicate layer with six-membered rings of corner-sharing SiO4 tetrahedra at its surface. Reflection-absorption infrared spectroscopy revealed a single peak at 1050 cm(-1) due to Si-O-Fe linkages, while x-ray photoelectron spectroscopy data indicated a Si/Fe ratio of one, that the Fe were all 3+, and that the Si atoms were closest to the surface. Consistent with these experimental observations, first principles theory identified a layer with an overall stoichiometry of Fe2Si2O9 with the six-membered rings of SiO4 tetrahedra at the surface. One of the oxygen atoms appears as a chemisorbed atom on the Pd surface, and, thus, the layer is better described as Fe2Si2O8 atop an oxygen-covered Pd surface. The Fe2Si2O8 is chemically bound to the Pd surface through its oxygen atoms; and the passivation of these bonds by hydrogen was investigated theoretically. Upon hydrogenation, the adsorbed O atom joins the Fe silicate layer and thermodynamic analysis indicates that, at room temperature and H-2 pressures below 1 atm, Fe2Si2O9H4 becomes favored. The hydrogenation is accompanied by a substantial increase in the equilibrium distance between the oxide layer and the Pd surface and a drop in the adhesion energy to the surface. Together the results indicate that a highly ordered 2D Fe silicate can be grown on Pd(111) and that subsequent hydrogenation of this layer offers potential to release the 2D material from the growth substrate.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要