Estimating the cost of growth in southern right whales from drone photogrammetry data and long-term sighting histories

MARINE ECOLOGY PROGRESS SERIES(2022)

引用 16|浏览2
暂无评分
摘要
Animal body size and growth patterns play important roles in shaping the life history of species. Baleen whales include the largest animals on the planet, with somatic growth costs expected to be substantial. We used unmanned aerial vehicle photogrammetry and long-term individual sighting histories from photo identification (1991-2019) to estimate the cost of somatic growth for southern right whales (SRWs) Eubalaena australis. A Richards length-at-age growth model was developed, based on 161 calves, 20 yearlings, 1 juvenile and 23 adults, ranging in age from newborn to 27 yr. Predicted lengths were 4.7 m at birth, 12.5 m at minimum age of first parturition (6 yr) and an asymptotic length of 14.3 m. A volume-at-age curve was estimated from the body volume versus length relationship, and converted to a mass-at-age curve, using data on body tissue composition of North Pacific right whales E. japonica (n = 13). The energetic cost of growth was estimated using published estimates of tissue lipid and protein concentrations. The cost of growth for SRWs (in MJ d(-1)) was 2112 at birth, 544 at 4 mo, 314 at 1 yr (similar to weaning age), 108 at 5 yr (minimum age of sexual maturity), 51.5 at 10 yr and 5.2 at 30 yr. The cumulative cost to age 30 was 764.3 GJ, but varied widely (458-995 GJ) depending on the tissue energy content. Our estimates represent a healthy SRW population, and provide a baseline to investigate individual and population level impacts of anthropogenic disturbance (including climate change).
更多
查看译文
关键词
Eubalaena australis, Baleen whales, Body size, Body length, Body mass, Bioenergetics, Growth models, Morphometrics, Life histories, Unmanned aerial vehicle
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要