Toxicity Detection with Generative Prompt-based Inference

arxiv(2022)

引用 0|浏览5
暂无评分
摘要
Due to the subtleness, implicity, and different possible interpretations perceived by different people, detecting undesirable content from text is a nuanced difficulty. It is a long-known risk that language models (LMs), once trained on corpus containing undesirable content, have the power to manifest biases and toxicity. However, recent studies imply that, as a remedy, LMs are also capable of identifying toxic content without additional fine-tuning. Prompt-methods have been shown to effectively harvest this surprising self-diagnosing capability. However, existing prompt-based methods usually specify an instruction to a language model in a discriminative way. In this work, we explore the generative variant of zero-shot prompt-based toxicity detection with comprehensive trials on prompt engineering. We evaluate on three datasets with toxicity labels annotated on social media posts. Our analysis highlights the strengths of our generative classification approach both quantitatively and qualitatively. Interesting aspects of self-diagnosis and its ethical implications are discussed.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要