1-Nitropyrene disrupts testosterone biogenesis via AKAP1 degradation promoted mitochondrial fission in mouse Leydig cell

Environmental Pollution(2022)

引用 5|浏览8
暂无评分
摘要
Previous study found 1-NP disrupted steroidogenesis in mouse testis, but the underlying mechanism remained elusive. The current work aims to explore the roles of ROS-promoted AKAP1 degradation and excessive mitochondrial fission in 1-NP-induced steroidogenesis disruption in MLTC-1 cells. Transmission electron microscope analysis found 1-NP promoted excessive mitochondrial fission. Further data showed 1-NP disrupted mitochondrial function. pDRP1 (Ser637), a negative regulator of mitochondrial fission, was reduced in 1-NP-treated MLTC-1 cells. Mechanistically, 1-NP caused degradation of AKAP1, an upstream regulator of pDRP1 (Ser637). MG132, a proteasome inhibitor, attenuated 1-NP-induced AKAP1 degradation and downstream pDRP1 (Ser637) reduction, thereby ameliorating 1-NP-downregulated steroidogenesis. Further analysis found that cellular ROS was elevated and NOX4, HO-1 and SOD2 were upregulated in 1-NP-exposed MLTC-1 cells. NAC, a well-known commercial antioxidant, alleviated 1-NP-induced excessive ROS and oxidative stress. 1-NP-induced AKAP1 degradation and subsequent downregulation of pDRP1 (Ser637) were prevented by NAC pretreatment. Moreover, NAC attenuated 1-NP-resulted T synthesis disturbance in MLTC-1 cells. The present study indicates that ROS mediated AKAP1 degradation and subsequent pDRP1 (Ser637) dependent mitochondrial fission is indispensable in 1-NP caused T synthesis disruption. This study provides a new insight into 1-NP-induced endocrine disruption, and offers theoretical basis in public health prevention.
更多
查看译文
关键词
1-Nitropyrene,T synthesis,MLTC-1 cell,AKAP1,Mitochondrial fission,ROS
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要