A vitronectin-derived peptide prevents and restores alveolar bone loss by modulating bone re-modelling and expression of RANKL and IL-17A

JOURNAL OF CLINICAL PERIODONTOLOGY(2022)

引用 4|浏览9
暂无评分
摘要
Aim This study investigated whether a vitronectin-derived peptide (VnP-16) prevents and/or reverses alveolar bone resorption induced by ligature-induced periodontitis in rodents and identified the underlying mechanism. Materials and Methods We evaluated the effects of VnP-16 on osteogenic differentiation in human periodontal ligament cells (hPDLCs), lipopolysaccharide-induced inflammatory responses in gingival fibroblasts, and immune response in T lymphocytes. Ligature-induced periodontitis was induced by ligating the bilateral mandibular first molars for 14 days in rats and for 7 days in mice (n = 10/group). VnP-16 (100 mu g/10 mu l) was applied topically into the gingival sulcus of rats via intra-sulcular injection, whereas the peptide (50 mu g/5 mu l) was administered directly into the gingiva of mice via intra-gingival injection. To evaluate the preventive and therapeutic effects of VnP-16, micro-computed tomography analysis and histological staining were then performed. Results VnP-16 promoted osteogenic differentiation of periodontal ligament cells and inhibited the production of lipopolysaccharide-induced inflammatory mediators in gingival fibroblasts. Concomitantly, VnP-16 modulated the host immune response by reducing the number of receptor activator of NF-kappa B ligand (RANKL)-expressing lipopolysaccharide-stimulated CD4(+) and CD8(+) T cells, and by suppressing RANKL and interleukin (IL)-17A production. Furthermore, local administration of VnP-16 in rats and mice significantly prevented and reversed alveolar bone loss induced by ligature-induced periodontitis. VnP-16 enhanced osteoblastogenesis and simultaneously inhibited osteoclastogenesis and suppressed RANKL and IL-17A expression in vivo. Conclusions Our findings suggest that VnP-16 acts as a potent therapeutic agent for preventing and treating periodontitis by regulating bone re-modelling and immune and inflammatory responses.
更多
查看译文
关键词
alveolar bone loss, bone re-modelling, inflammatory responses, therapeutics, vitronectin-derived peptide
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要