谷歌浏览器插件
订阅小程序
在清言上使用

Atomistic Molecular Dynamics Simulations of DNA in Complex 3D Arrangements for Comparison with Lower Resolution Structural Experiments

Methods in molecular biology (Clifton, NJ)(2022)

引用 0|浏览1
暂无评分
摘要
Atomic-level computer simulations are a very useful tool for describing the structure and dynamics of complex biomolecules such as DNA and for providing detail at a resolution where experimental techniques cannot arrive. Molecular dynamics (MD) simulations of mechanically distorted DNA caused by agents like supercoiling and protein binding are computationally challenging due to the large size of the associated systems and timescales. However, nowadays they are achievable thanks to the efficient usage of GPU and to the improvements of continuum solvation models. This together with the concurrent improvements in the resolution of single-molecule experiments, such as atomic force microscopy (AFM), makes possible the convergence between the two. Here we present detailed protocols for doing so: for performing molecular dynamics (MD) simulations of DNA adopting complex three-dimensional arrangements and for comparing the outcome of the calculations with single-molecule experimental data with a lower resolution than atomic.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要