Copper removal and elemental sulfur recovery from fracturing flowback water in a microbial fuel cell with an extra electrochemical anode.

Chemosphere(2022)

引用 9|浏览7
暂无评分
摘要
Fracturing flowback water (FFW) from the shale gas exploitation resulted in environmental burden. FFW could be treated by a microbial fuel cell (MFC), but the challenge for the precipitation of ultrafine particles due to the supersaturation of sulfide remains to be addressed. Herein, we reported a Dual-anode MFC (DA-MFC), in which the FFW remediation and elemental sulfur recovery could be performed by regulating potential of the electrochemical anode. The removal of COD and sulfate was 70.0 ± 1.2% and 75.5 ± 0.4% in DA-MFCs by controlling potential at -0.1 V (vs. SHE) for 36 h. Meanwhile, the efficiency of copper removal and elemental sulfur recovery was up to 99.9 ± 0.5% and 75.6 ± 1.8%, respectively, which was attributed by the electrochemical oxidation of sulfide to elemental sulfur. Trichococcus, unclassified Prolixibacteraceae and unclassified Cloacimonadales enriched on the bioanodes of DA-MFCs were sensitive to potential regulation and favorable for degrading complex organics. UnclassifiedSynergistaceae, Desulfobacterium, Desulfovibrio, unclassified bacteria and Syner-01 was conducive to sulfate removal. Moreover, the elimination of Azoarcus due to potential regulation suppressed the biological oxidation of sulfide. Thus, organics were efficiently removed through the biological oxidation and sulfate reduction on bioanode, the copper ions were combined with the sulfide from sulfate reduction to precipitate effectively, and then the excessive sulfide in the system was converted into elemental sulfur attached on the electrochemical anode. The results provide new sights on bio-electrochemical technology for treatment of wastewater containing complex organics, heavy metals and sulfates.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要