Electrochemically applied hydroxyapatite on the cementless porous surface of Bi- Metric stems reduces early migration and has a lasting effect

BONE & JOINT JOURNAL(2022)

引用 1|浏览5
暂无评分
摘要
Aims BoneMaster is a thin electrochemically applied hydroxyapatite (HA) coating for orthopaedic implants that is quickly resorbed during osseointegration. Early stabilization is a surrogacy marker of good survival of femoral stems. The hypothesis of this study was that a BoneMaster coating yields a fast early and lasting fixation of stems. Methods A total of 53 patients were randomized to be treated using Bi-Metric cementless femoral stems with either only a porous titanium plasma-sprayed coating (P group) or a porous titanium plasma-sprayed coating with an additional BoneMaster coating (PBM group). The patients were examined with radiostereometry until five years after surgery. Results At three months, the mean total translation (TT) was 0.95 mm (95% confidence interval (CI) 0.68 to 1.22) in the P group and 0.57 mm (95% CI 0.31 to 0.83) in the PBM group (p = 0.047). From two to five years, the TT increased by a mean of 0.14 mm (95% CI 0.03 to 0.25) more in the P group than in the PBM group (p = 0.021). In osteopenic patients (n = 20), the mean TT after three months was 1.61 mm (95% CI 1.03 to 2.20) in the P group and 0.73 mm (95% CI 0.25 to 1.21) in the PBM group (p = 0.023). After 60 months, the mean TT in osteopenic patients was 1.87 mm (95% CI 1.24 to 2.50) in the P group and 0.82 mm (95% CI 0.30 to 1.33) in the PBM group (p = 0.011). Conclusion There was less early and midterm migration of cementless stems with BoneMaster coating compared with those with only a porous titanium plasma-sprayed coating. Although a BoneMaster coating seems to be important for stem fixation, especially in osteopenic patients, further research is warranted. Cite this article: Bone Joint J 2022;104-B(6):647-656.
更多
查看译文
关键词
BoneMaster ,Cementless,Femoral stem,Hip arthroplasty ,Hydroxyapatite,Radiostereometric analysis (RSA),Radiostereometry,cementless femoral stems,early stabilization,fast,femoral stems,fixation of stems,hydroxyapatite,orthopaedic implants,osseointegration,porous titanium
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要