A novel high-throughput hyperspectral scanner and analytical methods for predicting maize kernel composition and physical traits.

Food chemistry(2022)

引用 2|浏览17
暂无评分
摘要
Large-scale investigations of maize kernel traits important to researchers, breeders, and processors require high throughput methods, which are presently lacking. To address this bottleneck, we developed a novel flatbed platform that automatically acquires and analyzes multiwavelength near-infrared (NIR hyperspectral) images of maize kernels precisely enough to support robust predictions of protein content, density, and endosperm vitreousness. The upward facing-camera design and the automated ability to analyze the embryo or abgerminal sides of each individual kernel in a sample with the appropriate side-specific model helped to produce a superior combination of throughput and prediction accuracy compared to other single-kernel platforms. Protein was predicted to within 0.85% (root mean square error of prediction), density to within 0.038 g/cm3, and endosperm vitreousness percentage to within 6.3%. Kernel length and width were also accurately measured so that each kernel in a rapidly scanned sample was comprehensively characterized.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要