Characterizing ketamine-induced dissociation using human intracranial neurophysiology: brain dynamics, network activity, and interactions with propofol

ANESTHESIA AND ANALGESIA(2022)

引用 0|浏览20
暂无评分
摘要
Subanesthetic doses of ketamine produce rapid and sustained anti-depressant effects in patients with treatment-resistant depression. Unfortunately, the usefulness of ketamine as a treatment is limited by its potential for abuse because of psychotropic side effects such as dissociation. Understanding the brain dynamics and the neural circuits involved in ketamine’s effects could lend insight into improved therapies for depression with fewer adverse effects. It is believed that ketamine acts via NMDA receptor and hyperpolarization-activated cyclic nucleotide-gated 1 (HCN1) channels to produce changes in oscillatory brain dynamics. Here we show, in humans, a detailed description of the principal oscillatory changes in cortical and subcortical structures by administration of a subanesthetic dose of ketamine. Using recordings from intracranial electrodes, we found that ketamine increased gamma oscillations within prefrontal cortical areas and the hippocampus--structures previously implicated in ketamine’s antidepressant effects. Furthermore, our studies provide direct evidence of a ketamine-induced 3 Hz oscillation in posteromedial cortex that has been proposed as a mechanism for its dissociative effects. By analyzing changes in neural oscillations after the addition of propofol, whose GABAergic activity antagonizes ketamine’s NMDA-mediated disinhibition alongside a shared HCN1 inhibitory effect, we identified brain dynamics that could be attributed to NMDA-mediated disinhibition versus HCN1 inhibition. Overall, our results imply that ketamine engages different neural circuits in distinct frequency-dependent patterns of activity to produce its antidepressant and dissociative sensory effects. These insights may help guide the development of novel brain dynamic biomarkers and therapeutics for depression. ### Competing Interest Statement P.L.P. is an inventor on patents assigned to MGH related to brain monitoring, an inventor on a patent licensed to Masimo by Massachusetts General Hospital and a Co-founder of PASCALL Systems, Inc., a company developing closed-loop physiological control systems for anesthesiology. E.N.B. is an inventor on patents assigned to MGH related to brain monitoring, an inventor on a patent licensed to Masimo by Massachusetts General Hospital and a Co-founder of PASCALL Systems, Inc., a company developing closed-loop physiological control systems for anesthesiology.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要