谷歌浏览器插件
订阅小程序
在清言上使用

Spatially Revealed Perfluorooctane Sulfonate-Induced Nephrotoxicity in Mouse Kidney Using Atmospheric Pressure MALDI Mass Spectrometry Imaging.

Science of The Total Environment(2022)

引用 16|浏览15
暂无评分
摘要
Perfluorooctane sulfonate (PFOS), an emerging environmental persistent pollutant, has attracted extensive attention due to its potential nephrotoxicity. However, little is known about the spatial variations of lipid metabolism associated with PFOS exposure. In this study, atmospheric pressure matrix-assisted laser desorption/ionization mass spectrometry imaging (AP-MALDI MSI) was used to reveal the spatial distributions of PFOS and its adverse effect on lipid metabolism directly in mouse kidney sections. We have observed that PFOS accumulated in the renal pelvis and outer cortex regions, with some found in the medulla and inner cortex regions. Hematoxylin and eosin (H&E) staining results also demonstrated that the accumulation of PFOS caused damage to the mouse kidney, which was consistent with AP-MALDI MSI results. Furthermore, a total of 42 lipids were shown to be significantly different in the spatial distribution patterns and variations between control and PFOS exposure mice groups, including the significant down-regulation of lyso-glycerophospholipids (Lyso-GPs), phosphatidic acids (PA), phosphatidylcholines (PC), phosphatidylethanolamines (PE), phosphatidylserines (PS) sphingomyelins (SM) and sulfatides (ST) in renal medulla or cortex region of mouse kidney sections, and remarkable up-regulation of cholesterol and phosphatidylinositols (PI) in the cortex regions of mouse kidney sections. The AP-MALDI MSI provides a new tool to explore spatial distributions and variations of the endogenous metabolites for the risk assessment of environmental pollutants.
更多
查看译文
关键词
AP-MALDI MSI,Lipids,Nephrotoxicity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要