Optimization of flow path parameters for enhanced sensitivity lateral flow devices

Talanta(2022)

引用 3|浏览7
暂无评分
摘要
Lateral flow devices (LFDs) or lateral flow tests (LFTs) are one of the most widely used biosensor platforms for point-of-care (POC) diagnostics. The basic LFD design has remained largely unchanged since its first appearance, and this has limited LFD use in clinical applications due to a general lack of analytical sensitivity. We report here a comprehensive study of the use of laser-patterned geometric control barriers that influence the flow dynamics within an LFD, with the specific aim of enhancing LFD sensitivity and lowering the limit of detection (LOD). This control of sample flow produces an increase in the time available for optimizing the binding kinetics of the implemented assay. The geometric modification to the flow path is in the form of a constriction that is produced by depositing a photo-sensitive polymer onto the nitrocellulose membrane which when polymerized, creates impermeable barrier walls through the depth of the membrane. Both the position of the constriction within the flow path and the number of constrictions allow for an increase in the sensitivity because of a slower overall flow rate within the test and a larger volume of sample per unit width of the test line. For these high sensitivity LFDs (HS-LFD), through optimization of the constriction position and addition of a second constriction we attained a 62% increase in test line color intensity for the detection of procalcitonin (PCT) and were also able to lower the LOD from 10 ng/mL to 1 ng/mL. In addition, of relevance for future commercial exploitation, this also significantly decreases the antibody consumption per device leading to reduced costs for test production. We have further tested our HS-LFD with contrived human samples, validating its application for future clinical use.
更多
查看译文
关键词
Flow,High sensitivity,Lateral flow,High sensitivity lateral Flow device (HS-LFD),Geometric,Flow dynamics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要