谷歌浏览器插件
订阅小程序
在清言上使用

Indirect charging of carbon by aqueous redox mediators contributes to the enhanced desalination performance in flow-electrode CDI.

Water research(2022)

引用 9|浏览9
暂无评分
摘要
Reversible electrochemical separation based on flow electrodes (e.g., flow-electrode capacitive deionization (FCDI)) is promising to desalinate brackish water, a reliable alternative source of freshwater. The deployment of redox mediators (RMs) in FCDI offers an energy-efficient means to improve the process performance, but the nature of the RMs-mediated charge transfer remains poorly understand. We therefore systematically investigated commonly-used RMs including sodium anthraquinone-2-sulfonate (AQS), 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO), hydroquinone (HQ) and ferricyanide ([Fe(CN)6]3-). Results showed that the desalination rate could be increased by over 260% with the addition of 10 mM [Fe(CN)6]3-. The lowest efficiency of AQS among the RMs should be ascribed to its reduction potential of -0.84 V (vs. Ag/AgCl) exceeding the potential (-0.48 V) of the negatively charged current collector at 1.2 V. While aqueous TEMPO and HQ could facilitate salt removal, their loss of efficiencies upon sorption onto the carbon surface indicated the insignificant pseudocapacitive contribution to ion migration. In-situ cyclic voltammetry measurements demonstrated the crucial role of the indirect charging of the flowable carbon materials to enhance the desalination performance in RMs-mediated FCDI. To sum up, results of this work pave a way to understand the RMs-mediated charge transfer and ion migration in FCDI, which would serve the purpose of design and optimization of the flow electrode systems for wider environmental applications.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要