Synthesis and Electrochemical Characterization of LiNi0.5Co0.2Mn0.3O2 Cathode Material by Solid-Phase Reaction

MATERIALS(2022)

引用 0|浏览2
暂无评分
摘要
In this paper, using four carbonates as raw materials, the cathode material LiNi0.5Co0.2Mn0.3O2 was prepared with the "ball milling-calcining" solid-phase synthesis method. The specific reaction process, which consists of the decomposition of the raw materials and the generation of target products, was investigated thoroughly using the TG-DSC technique. XRD, SEM and charge/discharge test methods were utilized to explore the influence of different sintering temperatures on the structure, morphology and electrochemical performance of the LiNi0.5Co0.2Mn0.3O2 cathode. The results show that 900 similar to 1000 degrees C is the appropriate synthesis temperature range. LiNi0.5Co0.2Mn0.3O2 synthesized at 1000 degrees C delivers optimal cycling stability at 0.5 C. Meanwhile, its initial discharge specific capacity and coulomb efficiency reached 167.2 mAh g(-1) and 97.89%, respectively. In addition, the high-rate performance of the cathode sample prepared at 900 degrees C is particularly noteworthy. Cycling at 0.5 C, 1 C, 1.5 C and 2 C, the corresponding discharge specific capacity of the sample exhibited 148.1 mAh g(-1), 143.1 mAh g(-1), 140 mAh g(-1) and 138.9 mAh g(-1), respectively.
更多
查看译文
关键词
solid-phase synthesis, carbonate, temperature, LiNi0.5Co0.2Mn0.3O2
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要