Surface Structure Engineering of PtPd Nanoparticles for Boosting Ammonia Oxidation Electrocatalysis

ACS APPLIED MATERIALS & INTERFACES(2022)

引用 16|浏览6
暂无评分
摘要
Achieving high catalytic ammonia oxidation reaction (AOR) performance of Pt-based catalysts is of paramount significance for the development of direct ammonia fuel cells (DAFCs). However, the high energy barrier of dehydrogenation of *NH2 to *NH and easy deactivation by *N on the Pt surface make the AOR show sluggish kinetics. Here, we have put forward an alloying and surface modulation tactic to optimize Pt catalysts. Several spherical PtM (M = Co, Ni, Cu, and Pd) binary nanoparticles were controllably loaded on reduced graphene oxide (rGO). Among others, spherical PtPd nanoparticles displayed the most efficient catalytic activity. Further surface engineering of PtPd nanoparticles with a cubic-dominant structure has resulted in dramatic AOR activity improvements. The optimized (Pt85Pd15)-Pt-(1-Pt-00-Pt-)/rGO exhibited a low onset potential (0.467 V vs reversible hydrogen electrode (RHE)) and high peak mass activity (164.9 A g(-1)), much better than commercial Pt/C. Nevertheless, a short-term stability test along with morphology, structure, and composition characterizations indicate that the leaching of Pd atoms from PtPd alloy nanoparticles, their structure transformations, and the possible poisoning effects by the N-containing intermediates could result in the catalyst's activity loss during the AOR electrocatalysis. A temperature-dependent electrochemical test confirmed a reduced activation energy (similar to 12 kJ mol(-)(1) decrease) of cubic-dominant PtPd compared to Pt/C. Density functional theory calculations further demonstrated that Pd atoms in Pt decrease the reaction energy barrier of electrochemical dehydrogenation of *NH2 to *NH, resulting in an excellent catalytic activity for the AOR.
更多
查看译文
关键词
direct ammonia fuel cells, ammonia oxidation electrocatalysis, cubic-dominant PtPd nanoparticles, (100) surface, DFT calculations
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要