Parameterized Complexity Results for Bayesian Inference

arxiv(2022)

引用 0|浏览0
暂无评分
摘要
We present completeness results for inference in Bayesian networks with respect to two different parameterizations, namely the number of variables and the topological vertex separation number. For this we introduce the parameterized complexity classes $\mathsf{W[1]PP}$ and $\mathsf{XLPP}$, which relate to $\mathsf{W[1]}$ and $\mathsf{XNLP}$ respectively as $\mathsf{PP}$ does to $\mathsf{NP}$. The second parameter is intended as a natural translation of the notion of pathwidth to the case of directed acyclic graphs, and as such it is a stronger parameter than the more commonly considered treewidth. Based on a recent conjecture, the completeness results for this parameter suggest that deterministic algorithms for inference require exponential space in terms of pathwidth and by extension treewidth. These results are intended to contribute towards a more precise understanding of the parameterized complexity of Bayesian inference and thus of its required computational resources in terms of both time and space.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要