DiffWire: Inductive Graph Rewiring via the Lov\'asz Bound

arxiv(2022)

引用 21|浏览25
暂无评分
摘要
Graph Neural Networks (GNNs) have been shown to achieve competitive results to tackle graph-related tasks, such as node and graph classification, link prediction and node and graph clustering in a variety of domains. Most GNNs use a message passing framework and hence are called MPNNs. Despite their promising results, MPNNs have been reported to suffer from over-smoothing, over-squashing and under-reaching. Graph rewiring and graph pooling have been proposed in the literature as solutions to address these limitations. However, most state-of-the-art graph rewiring methods fail to preserve the global topology of the graph, are neither differentiable nor inductive, and require the tuning of hyper-parameters. In this paper, we propose DiffWire, a novel framework for graph rewiring in MPNNs that is principled, fully differentiable and parameter-free by leveraging the Lov\'asz bound. The proposed approach provides a unified theory for graph rewiring by proposing two new, complementary layers in MPNNs: CT-Layer, a layer that learns the commute times and uses them as a relevance function for edge re-weighting; and GAP-Layer, a layer to optimize the spectral gap, depending on the nature of the network and the task at hand. We empirically validate the value of each of these layers separately with benchmark datasets for graph classification. We also perform preliminary studies on the use of CT-Layer for homophilic and heterophilic node classification tasks. DiffWire brings together the learnability of commute times to related definitions of curvature, opening the door to creating more expressive MPNNs.
更多
查看译文
关键词
inductive graph rewiring
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要