Evaluation of a laboratory-based high-throughput SARS-CoV-2 antigen assay

CLINICAL CHEMISTRY AND LABORATORY MEDICINE(2022)

引用 9|浏览11
暂无评分
摘要
Objectives Antigen tests are an essential part of SARS-CoV-2 testing strategies. Rapid antigen tests are easy to use but less sensitive compared to nucleic acid amplification tests (NAT) and less suitable for large-scale testing. In contrast, laboratory-based antigen tests are suitable for high-throughput immunoanalyzers. Here we evaluated the diagnostic performance of the laboratory-based Siemens Healthineers SARS-CoV-2 Antigen (CoV2Ag) assay. Methods In a public test center, from 447 individuals anterior nasal swab specimens as well as nasopharyngeal swab specimens were collected. The nasal swab specimens were collected in sample inactivation medium and measured using the CoV2Ag assay. The nasopharyngeal swab specimens were measured by RT-PCR. Additionally, 9,046 swab specimens obtained for screening purposes in a tertiary care hospital were analyzed and positive CoV2Ag results confirmed by NAT. Results In total, 234/447 (52.3%) participants of the public test center were positive for SARS-CoV-2-RNA. Viral lineage B1.1.529 was dominant during the study. Sensitivity and specificity of the CoV2Ag assay were 88.5% (95%CI: 83.7-91.9%) and 99.5% (97.4-99.9%), respectively. Sensitivity increased to 93.7% (97.4-99.9%) and 98.7% (97.4-99.9%) for swab specimens with cycle threshold values <30 and <25, respectively. Out of 9,046 CoV2Ag screening tests from hospitalized patients, 21 (0.2%) swab specimens were determined as false-positive by confirmatory NAT. Conclusions Using sample tubes containing inactivation medium the laboratory-based high-throughput CoV2Ag assay is a very specific and highly sensitive assay for detection of SARS-CoV-2 antigen in nasal swab specimens including the B1.1.529 variant. In low prevalence settings confirmation of positive CoV2Ag results by SARS-CoV-2-RNA testing is recommended.
更多
查看译文
关键词
anterior nasal swab, COVID-19, high-throughput, laboratory-based, SARS-CoV-2 antigen
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要