Generation mechanism of surface micro-texture in axial ultrasonic vibration-assisted milling (AUVAM)

SSRN Electronic Journal(2022)

引用 0|浏览2
暂无评分
摘要
Although axial ultrasonic vibration-assisted milling (AUVAM) is promising for rapid and economical fabrication of 3D micro-texture on various surfaces, it has been a challenge to obtain micro-texture with small feature size and large height simultaneously. The mechanism and major influence factors for the formation of micro-texture by this method were explored in this study. It was found that the generation of micro-texture was mainly caused by cutting and extrusion from the flank face of the milling tool under ultrasonic vibration. Therefore, a novel 3D tool model that considered the relief angle, end cutting edge angle and the blade profile was established in simulation analysis. The good agreement between simulation and experimental results demonstrated that the influence of the flank face on the micro-texture was mainly attributed to the relief angle of the milling tool. It was the first time to report that both the height and the profile shape of the micro-texture unit were affected by the overlap and extrusion between the flank surface and the micro-texture. But this influence diminished with the increase of spindle speed. 3D sinusoid-shaped micro-texture with minimum width of 20 μm and height of 2 μm (fully reproduced the ultrasonic amplitude) was realized with the relief angle of 40° and spindle speed of 4000 rpm. Other typical textures of weave, shell, scale and corrugation were also presented to show the effective regulation of texture patterns in AUVAM. This work provides both theoretical and practical basis for such a low-cost, efficient and controllable 3D micro-texture preparation method.
更多
查看译文
关键词
Axial ultrasonic vibration-assisted milling (AUVAM),Micro-texture,Generation mechanism,Relief angle,Spindle speed
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要