Quick-Look Water Saturation Estimate with Density-Neutron Logs in Unknown or Mixed Salinity Environments: Case Studies in Middle East Oil-Bearing Carbonate Reservoirs

Day 3 Tue, November 30, 2021(2021)

引用 0|浏览4
暂无评分
摘要
Abstract We have shown previously that while total porosity is the weighted sum of density and neutron porosities, hydrocarbon volume is the weighted difference of the two. Thus, their ratio yields hydrocarbon, or equivalently, water saturation (Sw). In LWD environments where negligible invasion takes place while drilling, we investigate whether Sw derived from LWD density-neutron logs could approach true Sw in unknown or mixed water salinity environments. In such environments, it is well known that Sw determined from standalone resistivity or capture sigma logs is uncertain due to large water resistivity (Rw) or capture sigma (Σw) changes with salinity. On the other hand, the water density (ρw) and hydrogen index (HIw) variations with salinity are much less (Table 1). Hence, the water point on the density neutron crossplot does not move with salinity as much as the water point on a sigma-porosity crossplot does. Similarly, the water point on a resistivity-porosity Pickett plot would move drastically with changes in Rw. Also, because the hydrocarbon effect on density-neutron logs is much less in oil than in gas, the weights in the density-neutron porosities can be conveniently set at midpoint in light oil-bearing reservoirs without compromising porosity and saturation results. Thus, a quicklook estimate of Sw from density-neutron logs is the normalized ratio of the difference over the sum of density and neutron porosities. The normalization factor is a function of the hydrocarbon density. We also build a graphical Sw overlay for petrophysical insights. We tested the LWD density-neutron derived Sw in two Middle East carbonate oil wells that have mixed salinity. The two wells were extensively studied in the past. In the first well, the reference Sw is given by the joint-inversion of resistivity-sigma logs, corroborated with Sw estimated from multi-measurements time-lapsed analysis, and validated with water analysis on water samples taken by formation testers. In the second well, comprehensive wireline measurements targeting mixed salinity such as dielectric and 3D NMR were acquired to derive Sw, and complemented by formation tester sampling, core measurements, and LWD resistivity-sigma Sw. In both wells, density-neutron quicklook Sw agrees surprisingly well with Sw from other techniques. It may lack the accuracy and precision and the continuous salinity output but is sufficient to pinpoint both flooded zones and bypassed oil zones. Since density-neutron is part of triple-combo data that are first available in well data acquisition, it is recommended to go beyond porosity application and compute water saturation (Sw) in unknown or mixed salinity environments. The computation is straightforward and can be useful to complement other established techniques for quick evaluation in unknown or mixed water salinity environments.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要