Produced Water Quality: the Effects of Different Separation Methods

Day 4 Wed, December 01, 2021(2021)

引用 2|浏览1
Abstract Gravity settling represents the main oil-water separation mechanism. Many separation plants rely only on gravity settling with the aid of demulsifiers (direct or reverse breakers) and others chemicals such as water clarifiers if they are required. Yet, other complementary separation methods exist including filtration, flotation, and centrifugation. In terms of results and more specifically with respect to the separated produced-water, the main threshold on its quality is the dispersed oil content. Even with zero discharge and reinjection into hydrocarbon formations, the presence of residual oil in the aqueous phase represents a concern. High oil content results into formation damage and losses in injectivity which necessitates formation stimulations and hence additional operational expenses. In this work, we investigated the effects of different separation techniques on separated water quality. Based on the results, we identified potential improvements to the existing separation process. We used synthetic well-characterized emulsions. The emulsions were prepared at the forecast water:oil ratio using dead crude oil and synthetic representative brine. To clearly delineate and distinguish the effectiveness of different separation methods, we exacerbated the conditions by preparing very tight emulsions compared with what is observed on site. With that, we investigated three separation techniques: gravity settling, centrifugation, and filtration. First, we used jar tests to study gravity settling, then a benchtop centrifuge at two speeds to evaluate centrifugation potential. Finally, for filtration, we tested two options: membrane and deep-bed filtrations. Concerning the water quality, we performed solvent extraction followed by UV analyses to measure the residual oil content as well as light transmission measurements in order to compare the efficiency of different separation methods. The results of analyses suggest that gravity settling was not efficient in removing oil droplets from water. No separation occurred after 20 minutes in every tested condition. However, note that investigated conditions were severe, tighter emulsions are more difficult to separate compared to those currently observed in the actual separation plant. On the other hand, centrifugation significantly improved light transmission through the separated water. Accordingly, we can conclude that the water quality was largely improved by centrifugation. In terms of filtration, very good water quality was obtained after membrane filtration. However, significant fouling was observed. With deep-bed filtration, produced water quality remained good and fouling was no longer observed. On the basis of those results, we conclude that for our case study, centrifugation and deep-bed filtration techniques can significantly improve quality of the separated and eventually reinjected water. Thereby, integration of any of the two methods in the separation plant will lead to more efficient produced-water reinjection, eliminating formation damage and frequent stimulations. Yet, it is important to note that economics should be further assessed.
AI 理解论文