Compressing atmospheric data into its real information content

Nature Computational Science(2021)

引用 9|浏览6
暂无评分
摘要
Hundreds of petabytes are produced annually at weather and climate forecast centers worldwide. Compression is essential to reduce storage and to facilitate data sharing. Current techniques do not distinguish the real from the false information in data, leaving the level of meaningful precision unassessed. Here we define the bitwise real information content from information theory for the Copernicus Atmospheric Monitoring Service (CAMS). Most variables contain fewer than 7 bits of real information per value and are highly compressible due to spatio-temporal correlation. Rounding bits without real information to zero facilitates lossless compression algorithms and encodes the uncertainty within the data itself. All CAMS data are 17× compressed relative to 64-bit floats, while preserving 99% of real information. Combined with four-dimensional compression, factors beyond 60× are achieved. A data compression Turing test is proposed to optimize compressibility while minimizing information loss for the end use of weather and climate forecast data. Climate data are often stored at higher precision than is needed. The proposed compression automatically determines the precision from the data’s bitwise real information, removing any false information and leading to a more efficient compression.
更多
查看译文
关键词
Climate sciences,Computer science,Information technology,Scientific data,Computer Science,general
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要