Microstructural and Micro-Chemical Evolutions in Irradiated UCO Fuel Kernels of AGR-1 and AGR-2 TRISO Fuel Particles

Journal of Physics: Conference Series(2021)

引用 0|浏览5
暂无评分
摘要
Abstract AGR-1 and AGR-2 tristructural-isotropic (TRISO) fuel particles were fabricated using slightly different fuel kernel chemical compositions, modified fabrication processes, different fuel kernel diameters, and changed 235U enrichments. Extensive microstructural and analytical characterizations were conducted to correlate those differences with the fuel kernels’ responses to neutron irradiations in terms of irradiated fuel microstructure, fission products’ chemical and physical states, and fission gas bubble evolutions. The studies used state-of-the-art transmission electron microscopy (TEM) equipped with energy-dispersive x-ray spectroscopy (EDS) via four silicon solid-state detectors with super sensitivity and rapid speed. The TEM specimens were prepared from selected AGR-1 and AGR-2 irradiated fuel kernels exposed to safety testing after irradiation. The particles were chosen in order to create representative irradiation conditions with fuel burnup in the range of 10.8 to 18.6% fissions per initial metal atom (FIMA) and time-average volume-average temperatures varying from 1070 to 1287°C. The 235U enrichment was 19.74 wt.% and 14.03 wt.% for the AGR-1 and AGR-2 fuel kernels, respectively. The TEM results showed significant microstructural reconstructions in the irradiated fuel kernels from both the AGR-1 and AGR-2 fuels. There are four major phases: fuel matrix of UO2 and UC, U2RuC2, and UMoC2—in the irradiated AGR-2 fuel kernel. Zr and Nd form a solid solution in the UC phase. The UMoC2 phase often features a detectable concentration of Tc. Pd was mainly found to be located in the buffer layer or associated with fission gas bubbles within the UMoC2 phase. EDS maps qualitatively show that rare-earth fission products (Nd et al.) preferentially reside in the UO2 phase. In contrast, in the irradiated AGR-1 fuel kernel, no U2RuC2 or UMoC2 precipitates were positively identified. Instead, there was a high number of rod-shaped precipitates enriched with Ru, Tc, Rh, and Pd observed in the fuel kernel center and edge zone. The differences in irradiated fuel kernel microstructural and micro-chemical evolution when comparing AGR-1 and AGR-2 TRISO fuel particles may result from a combination of irradiation temperature, fuel geometry, and chemical composition. However, irradiation temperature probably plays a more deterministic role. Limited electron energy-loss spectroscopy (EELS) characterizations of the AGR-2 fuel kernel show almost no carbon in the UO2 phase, but a small fraction of oxygen was detected in the UC/UMoC2 phase.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要