谷歌浏览器插件
订阅小程序
在清言上使用

The Microstructure of γ-Alumina

Energies(2021)

引用 15|浏览4
暂无评分
摘要
Though γ-Al2O3 has played a central role in heterogeneous catalysis for more than two centuries, its microstructure continues to be debated. Specifically, the positions of Al3+ cations within the crystal lattice have been discussed extensively in the literature. Many authors uphold that the cations primarily occupy spinel sites, while others endorse the occupation of non-spinel sites. The other main point of dispute is whether the structure contains interstitial hydrogen, with some authors supporting a partially hydrated model and others claiming that the structure must be completely dehydrated. The use of different structural models directly affects the predicted geometry of γ-Al2O3 at the surface, which in turn has significant implications for its catalytic utility. A comparison of theoretical data to experimental infrared (IR), X-ray diffraction (XRD), and selected area electron diffraction (SAED) evidence suggests that γ-Al2O3 features cations primarily in spinel positions, while IR and nuclear magnetic resonance (NMR) data indicate that interstitial hydrogen is present within the bulk structure.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要