Microstructural and physicochemical properties of some aluminum cooking tools obtained by artisanal recycling

European Journal of Materials Science and Engineering(2021)

引用 0|浏览0
暂无评分
摘要
Recycling metals waste is one of the ways to recover this waste, but also to preserve mining resources and fight against pollution. Aluminum is one of the most recycled metals due to its relatively low melting temperature, high conductivity, ductility, malleability and its high resistance to corrosion. In Togo, as in many West African countries, aluminum wastes are collected, melted and molded in artisanal way to make new objects for domestic use. The aim of this work is to investigate the process of artisanal aluminum recycling and use several modern techniques of characterization in order to improve thereafter products and manufacturing process. Two types of samples were subjected to a series of physicochemical analysis. One from an old aluminum pot (sample (a)) and the other cut from newly pot obtained after artisanal manufacturing (sample (b)). The measurement of the temperature inside the crucible during scarp aluminum melting operation reveals three temperatures ranges with a melting point around 750℃. Atomic absorption spectrometry (AAS) indicates that the two samples contain mostly aluminum, zinc, copper, magnesium and some traces of lead. Optical microscopy observations show that the alpha aluminum matrix was the most abundant phase with 80 to 90% of the observed area and some inclusions randomly dispersed. X- ray diffraction (XRD) confirms the presence of lines characteristic of alpha aluminum and bohemite (γ-AlOOH).
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要