Centrifugal Compressor Stage Efficiency and Rotor Stiffness Augmentation via Artificial Neural Networks

Andrea Agnolucci,Michele Marconcini,Andrea Arnone, Lorenzo Toni, Angelo Grimaldi, Marco Giachi

Volume 2D: Turbomachinery — Multidisciplinary Design Approaches, Optimization, and Uncertainty Quantification; Radial Turbomachinery Aerodynamics; Unsteady Flows in Turbomachinery(2021)

引用 1|浏览0
暂无评分
摘要
Abstract Centrifugal compressor stages with high rotor stiffness (i.e. impeller hub-to-outer-diameter ratio) may represent a crucial element to cope with tight rotordynamic requirements and constraints that are needed for certain applications. On the other hand, high-stiffness has a detrimental effect on the aerodynamic performance. Thus, an accurate design and optimization are required to minimize the performance gap with respect to low-stiffness stages. This paper shows a redesign and optimization procedure of a centrifugal compressor stage aimed at increasing the impeller stiffness while keeping high aerodynamic performance. Two different optimization steps are employed to consider a wide design space while keeping the computational cost as low as possible. At first the attention is focused on the impeller only, then the diffuser and the return channel are taken into account. The multi-objective and multi-operating point optimization makes use of artificial neural networks (ANNs) as a surrogate model to obtain the response surfaces. RANS calculations are carried out using the TRAF code and are employed to create the training dataset. Once the ANN has been trained, an optimization strategy is used to find the constrained optimum geometries for the impeller and the static components. The optimized high-stiffness stage is finally compared to the low-stiffness one to assess its applicability.
更多
查看译文
关键词
centrifugal compressor stage efficiency,rotor stiffness augmentation,artificial neural networks,neural networks
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要