Production cross-section calculations of 111In via proton and alpha-induced nuclear reactions

Modern Physics Letters A(2021)

引用 4|浏览1
暂无评分
摘要
[Formula: see text], a known gamma emitter, is used for many medical purposes such as imaging of myocardial metastases. It can be produced by using different nuclear reactions. In this study, the reactions of [Formula: see text]Ag([Formula: see text]2n)[Formula: see text], [Formula: see text](p,[Formula: see text]n)[Formula: see text], [Formula: see text](p,[Formula: see text]2n)[Formula: see text], [Formula: see text](p,[Formula: see text]3n)[Formula: see text] and [Formula: see text](p,[Formula: see text]4n)[Formula: see text], which are the production routes of [Formula: see text], were investigated. Production cross-section calculations were performed by using equilibrium and pre-equilibrium models of TALYS 1.95 and EMPIRE 3.2 nuclear reaction codes. Hauser–Feshbach Model was appointed in both codes for calculations of equilibrium approximations. Exciton and Hybrid Monte Carlo Simulation (HMS) models were used in the EMPIRE 3.2, whereas Two-Component Exciton and Geometry Dependent Hybrid Model, which is implemented to TALYS code, has been used in the TALYS 1.95 for pre-equilibrium reactions. Also, a weighting matrix of the nuclear models was obtained by using statistical variance analysis. The optimum beam energy to obtain [Formula: see text] has been determined by using the results obtained from this weighting matrix.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要