A versatile cortical pattern-forming circuit based on Rho, F-actin, Ect2, and RGA-3/4

JOURNAL OF CELL BIOLOGY(2022)

引用 5|浏览6
暂无评分
摘要
Many cells can generate complementary traveling waves of actin filaments (F-actin) and cytoskeletal regulators. This phenomenon, termed cortical excitability, results from coupled positive and negative feedback loops of cytoskeletal regulators. The nature of these feedback loops, however, remains poorly understood. We assessed the role of the Rho GAP RGA-3/4 in the cortical excitability that accompanies cytokinesis in both frog and starfish. RGA-3/4 localizes to the cytokinetic apparatus, "chases" Rho waves in an F-actin-dependent manner, and when coexpressed with the Rho GEF Ect2, is sufficient to convert the normally quiescent, immature Xenopus oocyte cortex into a dramatically excited state. Experiments and modeling show that changing the ratio of RGA-3/4 to Ect2 produces cortical behaviors ranging from pulses to complex waves of Rho activity. We conclude that RGA-3/4, Ect2, Rho, and F-actin form the core of a versatile circuit that drives a diverse range of cortical behaviors, and we demonstrate that the immature oocyte is a powerful model for characterizing these dynamics. Michaud et al. identify Ect2 and RGA-3/4 as core components of the cortical excitability circuit associated with cytokinesis. Additionally, they demonstrate that the immature Xenopus oocyte is a powerful model for characterizing excitable dynamics.
更多
查看译文
关键词
circuit,pattern-forming,f-actin
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要