Prediction of GPS Satellite Clock Offset Based on an Improved Particle Swarm Algorithm Optimized BP Neural Network

REMOTE SENSING(2022)

引用 3|浏览2
暂无评分
摘要
Satellite clock offset is an important factor affecting the accuracy of real-time precise point positioning (RT-PPP). Due to missing real-time service (RTS) products provided by the International GNSS Service (IGS) or network faults, users may not obtain effective real-time corrections, resulting in the unavailability of RT-PPP. Considering this issue, an improved back propagation (BP) neural network optimized by heterogeneous comprehensive learning and dynamic multi-swarm particle swarm optimizer (HPSO-BP) is proposed for clock offset prediction. The new model uses the particle swarm optimizer to optimize the initial parameters of the BP neural network, which can avoid the instability and over-fitting problems of the traditional BP neural network. IGS RTS product data is selected for the experimental analysis; the results demonstrate that the average prediction precision of the HPSO-BP model for 20-min and 60-min is better than 0.15 ns, improving by approximately 85% compared to traditional models including the linear polynomial (LP) model, the quadratic polynomial (QP) model, the gray system model (GM (1,1)), and the ARMA time series model. It indicates that the HPSO-BP model has reasonable practicability and stability in the short-term satellite clock offset prediction, and its prediction performance is superior to traditional models. Therefore, in practical applications, the clock offset products predicted by the HPSO-BP model can meet the centimeter-level positioning accuracy requirements of RT-PPP.
更多
查看译文
关键词
satellite clock offset,particle swarm optimization,BP neural network,clock offset prediction
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要