Probing topological spin liquids on a programmable quantum simulator

arXiv: Quantum Physics(2022)

引用 33|浏览20
暂无评分
摘要
Quantum phases with topological order, such as quantum spin liquids, have been the focus of explorations for several decades. Such phases feature a number of remarkable properties including long-range quantum entanglement. Moreover, they can be potentially exploited for the realization of robust quantum computation, as exemplified by the paradigmatic toric code model. While some indications that such phases may be present in frustrated condensed matter systems have been previously reported, so far quantum spin liquids have eluded direct experimental detection. In this talk, I will show how a programmable quantum simulator based on Rydberg atom arrays can be used to realize and probe quantum spin liquid states. In our approach, atoms are placed on the links of a kagome lattice and coherent evolution under Rydberg blockade enables the transition into frustrated quantum states with no local order. We detect the onset of a quantum spin liquid phase of the toric code type by measuring topological string operators in two complementary bases. The properties of this state are further revealed using a lattice with non-trivial topology, representing a step towards the realization of a topological qubit. Our observations open the door to the controlled experimental exploration of topological quantum matter, and could enable the investigation of new methods for topologically protected quantum information processing.
更多
查看译文
关键词
topological spin liquids,quantum,simulator
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要