谷歌浏览器插件
订阅小程序
在清言上使用

A New Pathway for CO2 Reduction Relying on the Self-Activation Mechanism of Boron-Doped Diamond Cathode

JACS Au(2022)

引用 12|浏览3
暂无评分
摘要
By means of an initial electrochemical carbon dioxide reduction reaction (eCO2RR), both the reaction current and Faradaic efficiency of the eCO2RR on boron-doped diamond (BDD) electrodes were significantly improved. Here, this effect is referred to as the self-activation of BDD. Generally, the generation of carbon dioxide radical anions (CO2 •-) is the most recognized pathway leading to the formation of hydrocarbons and oxygenated products. However, the self-activation process enabled the eCO2RR to take place at a low potential, that is, a low energy, where CO2 •- is hardly produced. In this work, we found that unidentate carbonate and carboxylic groups were identified as intermediates during self-activation. Increasing the amount of these intermediates via the self-activation process enhances the performance of eCO2RR. We further evaluated this effect in long-term experiments using a CO2 electrolyzer for formic acid production and found that the electrical-to-chemical energy conversion efficiency reached 50.2% after the BDD self-activation process.
更多
查看译文
关键词
boron-doped diamond,CO2 reduction,self-activation,energy conversion efficiency,intermediates
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要