Backtracking Reconstruction Network for Three-Dimensional Compressed Hyperspectral Imaging

REMOTE SENSING(2022)

引用 3|浏览7
暂无评分
摘要
Compressed sensing (CS) has been widely used in hyperspectral (HS) imaging to obtain hyperspectral data at a sub-Nyquist sampling rate, lifting the efficiency of data acquisition. Yet, reconstructing the acquired HS data via iterative algorithms is time consuming, which hinders the real-time application of compressed HS imaging. To alleviate this problem, this paper makes the first attempt to adopt convolutional neural networks (CNNs) to reconstruct three-dimensional compressed HS data by backtracking the entire imaging process, leading to a simple yet effective network, dubbed the backtracking reconstruction network (BTR-Net). Concretely, we leverage the divide-and-conquer method to divide the imaging process based on coded aperture tunable filter (CATF) spectral imager into steps, and build a subnetwork for each step to specialize in its reverse process. Consequently, BTR-Net introduces multiple built-in networks which performs spatial initialization, spatial enhancement, spectral initialization and spatial-spectral enhancement in an independent and sequential manner. Extensive experiments show that BTR-Net can reconstruct compressed HS data quickly and accurately, which outperforms leading iterative algorithms both quantitatively and visually, while having superior resistance to noise.
更多
查看译文
关键词
computational imaging,hyperspectral imaging,image reconstruction,convolutional neural network
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要