谷歌浏览器插件
订阅小程序
在清言上使用

Identification and Analysis of JAZ Gene Family in Ginkgo Biloba Reveals Candidate Genes for Biosynthesis of Terpene Trilactones

Forests(2022)

引用 1|浏览11
暂无评分
摘要
Terpene trilactones (TTLs) are the main secondary metabolites in Ginkgo biloba L. with efficacious pharmacological activity. Jasmonate ZIM-domain (JAZ) protein is a key regulatory factor of the JA signaling pathway, which regulates the biosynthesis of secondary metabolites such as terpenes, alkaloids, and flavonoids. In this study, GbJAZ01~GbJAZ11 were identified from the genome data in G. biloba, which contained TIFY-, Jas-, and weakly conserved NT-domains, and the promoters in most of them contained light, hormone, and stress-responsive elements. Phylogenetic analysis divided all JAZ proteins of Arabidopsis thaliana, Oryza sativa, Picea sitchensis, Taxus chinensis, and G. biloba into nine groups, in which GbJAZs belong to Group VI-IX. GbJAZs have similar functional motifs to A. thaliana and O. sativa, but also contain three specific motifs of gymnosperms, indicating that, although gymnosperms and angiosperms have some conservative structures and functions, their evolutionary processes are independent. Expression pattern analysis showed that the expression levels of GbJAZs were significantly up-regulated by MeJA, but the change pattern and amplitude were different, indicating that the function of GbJAZs in response to a JA signal may be different. After ABA and SA treatment, the expression of GbJAZs was up-regulated or inhibited in varying degrees, and different GbJAZs may be involved in the synergistic or antagonistic effects between JA and other hormone signals. The MeJA significantly increased the content of TTLs in G. biloba leaves, which were significantly positively correlated with the expression levels of GbJAZ01, 02, 07, and 11, and negatively correlated with the expression of GbJAZ04. They may play an important role in JA signaling pathways and the interactions between JA and other hormone signals, and participate in the regulation of the biosynthesis of TTLs. Our results provide a reference for the discovery that GbJAZs are involved in JA signaling pathways, and lay a theoretical foundation for analyzing JA signaling pathways to regulate the synthesis of secondary metabolites.
更多
查看译文
关键词
Ginkgo biloba,JAZ gene,terpene trilactones,JA signaling pathway
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要