Toward in Silico Modeling of Dynamic Combinatorial Libraries

ACS CENTRAL SCIENCE(2022)

引用 3|浏览12
暂无评分
摘要
Dynamic combinatorial libraries (DCLs) display adaptive behavior, enabled by the reversible generation of their molecular constituents from building blocks, in response to external effectors, e.g., protein receptors. So far, chemoinformatics has not yet been used for the design of DCLs-which comprise a radically different set of challenges compared to classical library design. Here, we propose a chemoinformatic model for theoretically assessing the composition of DCLs in the presence and the absence of an effector. An imine-based DCL in interaction with the effector human carbonic anhydrase II (CA II) served as a case study. Support vector regression models for the imine formation constants and imine-CA II binding were derived from, respectively, a set of 276 imines synthesized and experimentally studied in this work and 4350 inhibitors of CA II from ChEMBL. These models predict constants for all DCL constituents, to feed software assessing equilibrium concentrations. They are publicly available on the dedicated website. Models rationally selected two amines and two aldehydes predicted to yield stable imines with high affinity for CA II and provided a virtual illustration on how effector affinity regulates DCL members.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要