谷歌浏览器插件
订阅小程序
在清言上使用

Manipulation of 2DEG at double-doped high-entropy heterointerfaces

NANOSCALE(2022)

引用 2|浏览6
暂无评分
摘要
Chemical doping is a dominating method for manipulating oxide two-dimensional electron gas (2DEG). However, enhancing the doping level while maintaining the metallic conduction remains a challenge, which limits detailed knowledge of 2DEG manipulation. Herein, we propose a concept of high-entropy heterointerface, which consists of a complex oxide (containing at least 5 elements) at either or both sides of the interface. By doubly doping Sr and Mn elements in the Nd and Al sites of NdAlO3, we grow Nd1-xSrxAl1-xMnxO3 (NSAMO) films onto SrTiO3 (STO) substrates to fabricate NSAMO/STO high-entropy heterointerfaces with different thicknesses (2-30 nm) and a wide range of doping ratios x (0.14-0.56). The 2DEG conducting behavior is maintained until x = 0.42, which is higher compared with similar studies. The varying x results in the coexistence of rich properties like a weak anti-localization (0.14-0.42), abnormal Hall effect (0.28 & 0.42), Lifshitz transition (0.42) and stable structure. These results confirm the potential of this strategy to tailor 2DEG in all-oxide interfaces.
更多
查看译文
关键词
2deg,double-doped,high-entropy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要