The role of ZNF143 overexpression in rat liver cell proliferation

BMC Genomics(2022)

引用 1|浏览15
暂无评分
摘要
Background Zinc finger protein 143(ZNF143), a member of the Krüppel C2H2-type zinc finger protein family, is strongly associated with cell cycle regulation and cancer development. A recent study suggested that ZNF143 plays as a transcriptional activator that promotes hepatocellular cancer (HCC) cell proliferation and cell cycle transition. However, the exact biological role of ZNF143 in liver regeneration and normal liver cell proliferation has not yet been investigated. Methods In our study, we constructed a stable rat liver cell line (BRL-3A) overexpressing ZNF143 and then integrated RNA-seq and Cleavage Under Targets and Tagmentation (CUT&Tag) data to identify the mechanism underlying differential gene expression. Results Our results show that ZNF143 expression is upregulated during the proliferation phase of liver regeneration after 2/3 partial hepatectomy (PH). The cell counting kit-8 (CCK-8) assay, EdU staining and RNA-seq data analyses revealed that ZNF143 overexpression (OE) significantly inhibited BRL-3A cell proliferation and cell cycle progression. We then performed CUT&Tag assays and found that approximately 10% of ZNF143-binding sites (BSs) were significantly changed genome-wide by ZNF143 OE. However, CCCTC-binding factor (CTCF) binding to chromatin was not affected. Interestingly, the integration analysis of RNA-seq and CUT&Tag data showed that some of genes affected by ZNF143 differential BSs are in the center of each gene regulation module. Gene ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses indicated that these genes are critical in the maintenance of cell identity. Conclusion These results indicated that the expression level of ZNF143 in the liver is important for the maintenance of cell identity. ZNF143 plays different roles in HCC and normal liver cells and may be considered as a potential therapeutic target in liver disease.
更多
查看译文
关键词
ZNF143, Binding site, Cell proliferation, CUT&Tag
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要