Computational design and engineering of an Escherichia coli strain producing the nonstandard amino acid para-aminophenylalanine

iScience(2022)

引用 1|浏览7
暂无评分
摘要
Introducing heterologous pathways into host cells constitutes a promising strategy for synthesizing nonstandard amino acids (nsAAs) to enable the production of proteins with expanded chemistries. However, this strategy has proven challenging, as the expression of heterologous pathways can disrupt cellular homeostasis of the host cell. Here, we sought to optimize the heterologous production of the nsAA para-aminophenylalanine (pAF) in Escherichia coli. First, we incorporated a heterologous pAF biosynthesis pathway into a genome-scale model of E. coli metabolism and computationally identified metabolic interventions in the host’s native metabolism to improve pAF production. Next, we explored different approaches of imposing these flux interventions experimentally and found that the upregulation of flux in the chorismate biosynthesis pathway through the elimination of feedback inhibition mechanisms could significantly raise pAF titers (∼20-fold) while maintaining a reasonable pAF production-growth rate trade-off. Overall, this study provides a promising strategy for the biosynthesis of nsAAs in engineered cells.
更多
查看译文
关键词
Bioengineering,Metabolic engineering,Bioinformatics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要