谷歌浏览器插件
订阅小程序
在清言上使用

Thermodynamic Investigation of a Modified Compression Ignition Engine Fueled by Diesel Biodiesel Ethanol Blends

R. T. Sarathbabu, M. Lakshmikantha Reddy,M. Kannan,R. Balaji

Defence Science Journal/Defence science journal(2022)

引用 0|浏览3
暂无评分
摘要
The present study contrasts the thermodynamics analysis of modified diesel engines with traditional diesel engines. Thermodynamics study is done by the use of energy and exergy analysis for diesel, B20 (blend of 80 per cent diesel by volume with 20 per cent mahua biodiesel) and LHR modification and LTC 15 per cent EGR fuelled with B20 blend and 5 per cent ethanol with various loads ranging from no load to full load. Implemented two technologies for increasing engine efficiency. One of the primary techniques is the Low Heat Rejection (LHR) concept (or the so-called “Adiabatic” engine) applied. In the engine cylinder, a ceramic layer of Alumina (Al2O3) was used to modify the Low Heat Rejection (LHR). Another technique is Low-temperature combustion (LTC) modes are added by joining the inlet and exhaust pipes through valves to control the exhaust gas at an optimal rate of 15 per cent. The findings of energy and exergy distribution in the engine were compared using optimum alterations with fuel blends such as 20 per cent mahua biodiesel and 5 per cent ethanol. From energy distribution, best shaft power (QBP) (2.8kW) is transformed from heat input observed in the optimum altered engine at full load conditions compared to others. Due to modifications employed in the engine and fuels. Maximum unaccounted energy (QUN) loss in diesel (44 %). And highest thermal efficiency (31.2 %) is revealed in B20E5 (LHR+15 % LTC). From exergy distribution, it noticed that the same trend of energy distribution and at 100 per cent load condition, maximum (12.54kW) in diesel and minimum (8.45 kW) in B20E5 (LHR+15 % LTC) has obtained input availability (Ain).The maximum conversion rate of availability in brake power (Abp) (0.61 kW) in B20 (LHR). Compared to diesel, second law or exergetic efficiency more in B20E5 (LHR+15 % LTC).
更多
查看译文
关键词
Energy,Exergy,Diesel engine,Biodiesel,Ethanol,Low heat rejection
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要