谷歌浏览器插件
订阅小程序
在清言上使用

Life Cycle Assessment of Bio‐Based Plastics: Concepts, Findings, and Pitfalls

Biodegradable Polymers in the Circular Plastics Economy(2022)

引用 1|浏览5
暂无评分
摘要
Chapter 13 Life Cycle Assessment of Bio-Based Plastics: Concepts, Findings, and Pitfalls Li Shen, Li Shen Utrecht University, Copernicus Institute of Sustainable Development, Group Energy and Resources, Princetonlaan 8a, 3584 CS Utrecht, The NetherlandsSearch for more papers by this author Li Shen, Li Shen Utrecht University, Copernicus Institute of Sustainable Development, Group Energy and Resources, Princetonlaan 8a, 3584 CS Utrecht, The NetherlandsSearch for more papers by this author Book Editor(s):Michiel Dusselier, Michiel Dusselier KU Leuven Faculty of Bioscience Engineering, Center for Sustainable Catalysis & Engineering, Celestijnenlaan 200F, 3001 Heverlee, BelgiumSearch for more papers by this authorJean-Paul Lange, Jean-Paul Lange Shell Global Solutions Int. B.V., Grasweg 31, 1031 HW Amsterdam, NetherlandsSearch for more papers by this author First published: 06 May 2022 https://doi.org/10.1002/9783527827589.ch13 AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Summary In the past decades, bio-based plastics have attracted much attention because they offer the opportunities to use renewable resources to replace crude oil; some of them are biodegradable, and many of them are expected to lead to reduced greenhouse emissions. However, bio-based plastics also have environmental trade-offs that must not be overlooked. The increasing demand of bio-based fuels and materials puts pressure on land and water, and bio-based and non-biodegradable plastics are still persistent if they end up in the environment unintendedly. Life cycle assessment is a widely applied tool to measure the environmental impacts of innovative bio-based products. In this chapter, the key concepts of life cycle assessment are shortly described, followed by the case studies of seven bio-based plastic products including single-use bottles, cups, cutleries, food packaging films, carrier bags, agricultural clips, and mulch films. The interpretation and the insights gained from the case studies are discussed for the impacts known so far, the causes of the impacts, the major environmental trade-offs, the challenges around the end-of-life waste management, and the limitations of life cycle assessment methodology. References Tsiropoulos , I. , Faaij , A.P.C. , Lundquist , L. et al. ( 2015 ). Life cycle impact assessment of bio-based plastics from sugarcane ethanol . Journal of Cleaner Production 90 : 114 – 127 . Moretti , C. , Junginger , M. , and Shen , L. ( 2020 ). Environmental life cycle assessment of polypropylene made from used cooking oil . Resources, Conservation and Recycling 157 : 104750 . European Bioplastics ( 2020 ). Bioplastics: Facts and Figures for 2019 , p. 16 . Shen , L. , Worrell , E. , and Patel , M. ( 2010 ). Present and future development in plastics from biomass . Biofuels, Bioproducts and Biorefining 4 ( 1 ): 25 – 40 . ISO 14040 ( 2006 ). Environmental management — Life Cycle Assessment — Principles and Framework. Technical Committee ISO/TC 207 . Environmental Management 3 (1): 28 . ISO 14044 ( 2006 ). Life cycle assessment — Requirements and guidelines . International Organization for Standardization, p. 14044 . Baumann , H. and Tillman , A.-M. ( 2004 ). The Hitch Hiker's Guide to LCA . Lund : Studentlitteratur AB . European Commission ( 2010 ). ILCD Handbook: General guide for Life Cycle Assessment – Provisions and Action Steps . Ispra : European Commission, Joint Research Centre, Institute for Environment and Sustainability . European Commission ( 2013 ). Recommendation 2013/179/EU on the use of common methods to measure and communicate the life cycle environmental performance of products and organisations . Official Journal of the European Union ( L 124 ): 210 . European Commission ( 2018 ). PEFCR Guidance document . Guidance for the development of Product Environmental Footprint Category Rules (PEFCRs), version 6.3, December 14 2017. European Commission ( 2003 ). Communication COM (2003:302) - Integrated Product Policy - Building on Environmental Life-Cycle Thinking . Commission of the European Communities , 30. Fazio , S. , Biganzioli , F. , De Laurentiis , V. et al. ( 2018 ). Supporting information to the characterisation factors of recommended EF LCIA methods . RIVM ( 2017 ). ReCiPe 2016 v1.1. RIVM Rep. 2016-0104 . Guinée , J.B. , Gorrée , M. , Heijungs , R. et al. ( 2002 ). Handbook on Life Cycle Assessment. Operational Guide to the ISO Standards. I: LCA in Perspective. IIa: Guide. IIb: Operational Annex. III: Scientific Background . Dordrecht : Kluwer Academic Publishers . Bare , J. ( 2011 ). TRACI 2.0: The tool for the reduction and assessment of chemical and other environmental impacts 2.0 . Clean Technologies and Environmental Policy 13 ( 5 ): 687 – 696 . Inaba , A. and Itsubo , N. ( 2018 ). Preface . International Journal of Life Cycle Assessment 23 ( 12 ): 2271 – 2275 . European Commission ( 2018 ). Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions: A European Strategy for Plastics in a Circular Economy . COM(2018) 28 Final , SWD(2018) (1), 1–18. COWI, DG RTD, and Utrecht University ( 2019 ). Environmental impact assessments of innovative bio-based products . Sala , S. , Cerutti , A.K. , and Pant , R. ( 2018 ). Development of a Weighting Approach for Environmental Footprint . Luxembourg : European Commission, Joint Research Centre, Publication Office of the European Union . Carvalho , J.L.N. , Nogueirol , R.C. , Menandro , L.M.S. et al. ( 2017 ). Agronomic and environmental implications of sugarcane straw removal: a major review . GCB Bioenergy 9 ( 7 ): 1181 – 1195 . BSI ( 2011 ). Publicly Available Specification PAS 2050: 2011 . Specification for the assessment of the life cycle greenhouse gas emissions of goods and services, pp. 1 – 45 . ISO 14067:2013 ( 2013 ). Greenhouse gases — Carbon footprint of products — Requirements and guidelines for quantification and communication . International Organization for Standardization, p. 64 . Navigant ( 2019 ). Total GHG emissions worldwide : 53.7 Gt CO2 eq (2017). FAO ( 2010 ). Global Forest Resources Assessment 2010 . Main report. European Commission ( 2018 ). A European Strategy for Plastics in a Circular Economy . p. 18. https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1516265440535&uri=COM:2018:28:FIN . Silvennoinen , K. , Heikkilä , L. , Katajajuuri , J.-M. , and Reinikainen , A. ( 2015 ). Food waste volume and origin: case studies in the Finnish food service sector . Waste Management 46 : 140 – 145 . Razza , F. , Fieschi , M. , Innocenti , F.D. , and Bastioli , C. ( 2009 ). Compostable cutlery and waste management: an LCA approach . Waste Management 29 ( 4 ): 1424 – 1433 . Calderón , L.A. , Iglesias , L. , Laca , A. et al. ( 2010 ). The utility of life cycle assessment in the ready meal food industry . Resources, Conservation and Recycling 54 ( 12 ): 1196 – 1207 . PlasticsEurope ( 2010 ). Eco-profiles PlasticsEurope . Weiss , M. , Haufe , J. , Carus , M. et al. ( 2012 ). A review of the environmental impacts of biobased materials . Journal of Industrial Ecology 16 ( Suppl. 1 ): S169 – S181 . Hottle , T.A. , Bilec , M.M. , and Landis , A.E. ( 2013 ). Sustainability assessments of bio-based polymers . Polymer Degradation and Stability 98 ( 9 ): 1898 – 1907 . Chen , G.Q. and Patel , M.K. ( 2012 ). Plastics derive d from biological sources: present and future . Chemical Reviews 112 : 2082 – 2099 . Broeren , M.L.M. , Molenveld , K. , van den Oever , M.J.A. et al. ( 2016 ). Early-stage sustainability assessment to assist with material selection: a case study for biobased printer panels . Journal of Cleaner Production 135 : 30 – 41 . van der Hilst , F. , Hoefnagels , R. , Junginger , M. et al. ( 2018 ). Biomass provision and use, sustainability aspects . In: Encyclopedia of Sustainability Science and Technology (ed. R.A. Meyers ), 1487 – 1517 . New York, NY : Springer . Lamers , P. and Junginger , M. ( 2013 ). The ‘debt’ is in the detail: a synthesis of recent temporal forest carbon analyses on woody biomass for energy . Biofuels, Bioproducts and Biorefining 7 ( 4 ): 373 – 385 . Myhre , G. , Shindell , D. , Bréon , F.-M. et al. ( 2013 ). Anthropogenic and Natural Radiative Forcing . Climate Change 2013: The Physical Science Basis The Working Group I contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) , pp. 659 – 740 . WMO, NASA, NOA A, UNEP, and EC ( 1999 ). Scientific assessment of Ozone depletion . Rabl , A. , Spadaro , J.V. , and Holland , M. ( 2014 ). Description of the RiskPoll software . How Much Is Clean Air Worth? Frischknecht , R. , Braunschweig , A. , Hofstetter , P. , and Suter , P. ( 2000 ). Human health damages due to ionising radiation in life cycle impact assessment . Environmental Impact Assessment Review 20 : 159 – 189 . van Zelm , R. , Huijbregts , M.A.J. , den Hollander , H.A. et al. ( 2008 ). European characterization factors for human health damage of PM10 and ozone in life cycle impact assessment . Atmospheric Environment 42 : 441 – 453 . Posch , M. , Seppälä , J. , Hettelingh , J.P. et al. ( 2008 ). The role of atmospheric dispersion models and ecosystem sensitivity in the determination of characterisation factors for acidifying and eutrophying emissions in LCIA . International Journal of Life Cycle Assessment 13 : 477 – 486 . Struijs , J. , Beusen , A. , Zwart , D. , and Huijbregts , M. ( 2010 ). Characterization factors for inland water eutrophication at the damage level in life cycle impact assessment . International Journal of Life Cycle Assessment 16 : 59 – 64 . Milà i Canals , L. , Bauer , C. , Depestele , J. et al. ( 2007 ). Key elements in a framework for land use impact assessment within LCA (11 pp) . International Journal of Life Cycle Assessment 12 ( 1 ): 5 – 15 . Boulay , A.-M. , Bare , J. , De Camillis , C. et al. ( 2015 ). Consensus building on the development of a stress-based indicator for LCA-based impact assessment of water consumption: outcome of the expert workshops . International Journal of Life Cycle Assessment 20 ( 5 ): 577 – 583 . van Oers , L. , de Koning , A. , Guinée , J.B. , and Huppes , G. ( 2002 ). Abiotic resource depletion in LCA . Public Works and Water Management. Saouter , E. , Biganzoli , F. , and Ceriani , L. ( 2013 ). Environmental Footprint: Update of Life Cycle Impact Assessment Methods-Ecotoxicity freshwater, human toxicity cancer, and non-cancer . JRC Tech. Rep. Eur. Comm. Biodegradable Polymers in the Circular Plastics Economy ReferencesRelatedInformation
更多
查看译文
关键词
Green Plastics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要