谷歌浏览器插件
订阅小程序
在清言上使用

A Neuromorphic Processing System With Spike-Driven SNN Processor for Wearable ECG Classification

IEEE Transactions on Biomedical Circuits and Systems(2022)

引用 18|浏览38
暂无评分
摘要
This paper presents a neuromorphic processing system with a spike-driven spiking neural network (SNN) processor design for always-on wearable electrocardiogram (ECG) classification. In the proposed system, the ECG signal is captured by level crossing (LC) sampling, achieving native temporal coding with single-bit data representation, which is directly fed into an SNN in an event-driven manner. A hardware-aware spatio-temporal backpropagation (STBP) is suggested as the training scheme to adapt to the LC-based data representation and to generate lightweight SNN models. Such a training scheme diminishes the firing rate of the network with little plenty of classification accuracy loss, thus reducing the switching activity of the circuits for low-power operation. A specialized SNN processor is designed with the spike-driven processing flow and hierarchical memory access scheme. Validated with field programmable gate arrays (FPGA) and evaluated in 40 nm CMOS technology for application-specific integrated circuit (ASIC) design, the SNN processor can achieve 98.22% classification accuracy on the MIT-BIH database for 5-category classification, with an energy efficiency of 0.75 $\mu$ J/classification.
更多
查看译文
关键词
Computers,Electrocardiography,Neural Networks, Computer,Wearable Electronic Devices
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要