Energy-Accuracy Aware Finger Gesture Recognition for Wearable IoT Devices

Woosoon Jung,Hyung Gyu Lee

SENSORS(2022)

引用 2|浏览4
暂无评分
摘要
Wearable Internet of Things (IoT) devices can be used efficiently for gesture recognition applications. The nature of these applications requires high recognition accuracy with low energy consumption, which is not easy to solve at the same time. In this paper, we design a finger gesture recognition system using a wearable IoT device. The proposed recognition system uses a light-weight multi-layer perceptron (MLP) classifier which can be implemented even on a low-end micro controller unit (MCU), with a 2-axes flex sensor. To achieve high recognition accuracy with low energy consumption, we first design a framework for the finger gesture recognition system including its components, followed by system-level performance and energy models. Then, we analyze system-level accuracy and energy optimization issues, and explore the numerous design choices to finally achieve energy-accuracy aware finger gesture recognition, targeting four commonly used low-end MCUs. Our extensive simulation and measurements using prototypes demonstrate that the proposed design achieves up to 95.5% recognition accuracy with energy consumption under 2.74 mJ per gesture on a low-end embedded wearable IoT device. We also provide the Pareto-optimal designs among a total of 159 design choices to achieve energy-accuracy aware design points under given energy or accuracy constraints.
更多
查看译文
关键词
MLP, gesture recognition, flex sensor, model search, neural network
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要