Photoluminescence and Raman Spectra of One-Dimensional Lead-free Perovskite CsCu2I3 Single-Crystal Wires

JOURNAL OF PHYSICAL CHEMISTRY LETTERS(2022)

引用 15|浏览6
暂无评分
摘要
Lead-free highly luminescent CsCu2I3 perovskite has attracted much attention recently, but agreements on basic optical properties have remained unsettled. By correlating X-ray diffraction with the photoluminescence (PL) of CsCu2I3 single-crystal wires, we first show that blue PL at 420 nm originates from CuI. We then exclude defect states as a source for the broadband emission centered at 570 nm from the lack of defect absorption, PL under sub-bandgap photoexcitation, observations of a linear dependence of PL intensity on excitation laser power, and a strong spectral blueshift under mild hydrostatic pressure. Finally, using a model of the self-trapped exciton and the associated coordinate configuration diagram, we explain pressure evolutions of PL energy, intensity, and lifetime. Single-crystal wires also enable us to obtain polarization-dependent Raman spectra down to 10 cm(-1) and confirm their respective ambient crystal structure of orthorhombic Cmcm and phase transition to Pbnm at similar to 5 GPa.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要