Chrome Extension
WeChat Mini Program
Use on ChatGLM

Suppressing Electron Back-Donation for a Highly CO-tolerant Fuel Cell Anode Catalyst via Cobalt Modulation

ANGEWANDTE CHEMIE-INTERNATIONAL EDITION(2022)

Cited 26|Views21
No score
Abstract
Platinum on carbon (Pt/C) catalyst is commercially adopted in fuel cells but it undergoes formidable active-site poisoning by carbon monoxide (CO). In particular, given the sluggish kinetics of hydrogen oxidation reaction (HOR) in anion-exchange membrane fuel cell (AEMFC), the issues of Pt poisoning and slow rate would combine mutually, notably worsening the device performances. Here we overcome these challenges through incorporating cobalt (Co) into molybdenum-nickel alloy (MoNi4), termed Co-MoNi4, which not only shows superior HOR activity over the Pt/C catalyst in alkali, but more intriguingly exhibits excellent CO tolerance with only small activity decay after 10 000 cycles in the presence of 500 parts per million (ppm) CO. When feeding with CO (250 ppm)/H-2, the AEMFC assembled by this catalyst yields a peak power density of 394 mW cm(-2), far exceeding the Pt/C catalyst. Experimental and computational studies reveal that weakened CO chemisorption originates from the electron-deficient Ni sites after Co incorporation that suppresses d -> CO 2 pi* back-donation.
More
Translated text
Key words
AEMFCs, CO Tolerance, Hydrogen Oxidation Reaction, Platinum Group Metal-Free Catalysts
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined