A Novel Method to Improve the Physical Property and Biocompatibility of Decellularized Heart Valve Scaffold with Sericin and Polydopamine

Journal of Bionic Engineering(2022)

引用 0|浏览5
暂无评分
摘要
Cardiac valve replacement is an effective method to treat valvular heart disease. Artificial valves used routinely in clinic still have defects. In our study, we explored a novel method to modify the performance of Decellularized Heart Valve (DHV) scaffold. The decellularized porcine aortic valve was prepared using sequential hydrophile and lipophile solubilization method. The sericin was extracted from silk fibroin-deficient silkworm cocoon by lithium bromide method. First, DHV was immersed in sericin solution to produce the sericin–DHV composite scaffold. Then, we modified the DHV by making a Polydopamine (PDA) coating on the DHV first and then binding the sericin. The physical properties and biological compatibility of our composite scaffold were assessed in vitro and in vivo. Sericin were successfully prepared, combined to DHV and improved its biocompatibility. PDA coating further promoted the combination of sericin on DHV and improved the physical properties of scaffolds. The decay rate of our modified valve scaffold was decreased in vivo and it showed good compatibility with blood. In conclusion, our modification improved the physical properties and biocompatibility of the valve scaffold. The combination of PDA and sericin promoted the recellularization of decellularized valves, showing great potential to be a novel artificial valve.
更多
查看译文
关键词
Decellularized heart valve,Sericin,Polydopamine,Biocompatibility
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要