Parallel Block Compressive LiDAR Imaging

IEEE Transactions on Computational Imaging(2022)

引用 4|浏览1
暂无评分
摘要
We propose an architecture for reconstructing depth images from raw photon count data. The architecture uses very sparse illumination patterns, making it not only computationally efficient, but due to the significant reduction in illumination density, also low power. The main idea is to apply compressive sensing (CS) techniques to block (or patch) regions in the array, which results in improved reconstruction performance, fast concurrent processing, and scalable spatial resolution. Using real and simulated arrayed LiDAR data, our experiments show that the proposed framework achieves excellent depth resolution for a wide range of operating distances and outperforms previous algorithms for depth reconstruction from photon count data in both accuracy and computational complexity. This enables eye-safe reconstruction of high-resolution depth maps at high frame rates, with reduced power and memory requirements. It is possible to sample and reconstruct a depth map in just 12 ms, enabling real-time applications at frame rates above 80 Hz.
更多
查看译文
关键词
Compressive sensing,3D image reconstruction,LiDAR imaging,parallelization
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要