Application of Functional Modification of Iron-Based Materials in Advanced Oxidation Processes (AOPs)

WATER(2022)

引用 2|浏览4
暂无评分
摘要
Advanced oxidation processes (AOPs) have become a favored approach in wastewater treatment due to the high efficiency and diverse catalyzed ways. Iron-based materials were the commonly used catalyst due to their environmental friendliness and sustainability in the environment. We collected the published papers relative to the application of the modified iron-based materials in AOPs between 1999 and 2020 to comprehensively understand the related mechanism of modified materials to improve the catalytic performance of iron-based materials in AOPs. Related data of iron-based materials, modification types, target pollutants, final removal efficiencies, and rate constants were extracted to reveal the critical process of improving the catalytic efficiency of iron-based materials in AOPs. Our results indicated that the modified materials through various mechanisms to enhance the catalytic performance of iron-based materials. The principal aim of iron-based materials modification in AOPs is to increase the content of available Fe2+ and enhance the stability of Fe2+ in the system. The available Fe2+ is elevated by the following mechanisms: (1) modified materials accelerate the electron transfer to promote the Fe3+/Fe2+ reaction cycle in the system; (2) modified materials form chelates with iron ions and bond with iron ions to avoid Fe3+ precipitation. We further analyzed the effect of different modifying materials in improving these two mechanisms. Combining the advantages of different modified materials to develop iron-based materials with composite modification methods can enhance the catalytic performance of iron-based materials in AOPs for further application in wastewater treatment.
更多
查看译文
关键词
advanced oxidation processes (AOPs), iron-based materials, modification, organic pollutant
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要