谷歌浏览器插件
订阅小程序
在清言上使用

Steric Quenching of Mn(III) Thermal Spin Crossover: Dilution of Spin Centers in Immobilized Solutions

Magnetochemistry(2022)

引用 6|浏览8
暂无评分
摘要
Structural and magnetic properties of a new spin crossover complex [Mn(4,6-diOMe-sal2323)]+ in lattices with ClO4−, (1), NO3−, (2), BF4−, (3), CF3SO3−, (4), and Cl− (5) counterions are reported. Comparison with the magnetostructural properties of the C6, C12, C18 and C22 alkylated analogues of the ClO4− salt of [Mn(4,6-diOMe-sal2323)]+ demonstrates that alkylation effectively switches off the thermal spin crossover pathway and the amphiphilic complexes are all high spin. The spin crossover quenching in the amphiphiles is further probed by magnetic, structural and Raman spectroscopic studies of the PF6− salts of the C6, C12 and C18 complexes of a related complex [Mn(3-OMe-sal2323)]+ which confirm a preference for the high spin state in all cases. Structural analysis is used to rationalize the choice of the spin quintet form in the seven amphiphilic complexes and to highlight the non-accessibility of the smaller spin triplet form of the ion more generally in dilute environments. We suggest that lattice pressure is a requirement to stabilize the spin triplet form of Mn3+ as the low spin form is not known to exist in solution.
更多
查看译文
关键词
spin crossover,Schiff-base,Mn3+,hexadentate,Jahn-Teller,crystal engineering
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要