谷歌浏览器插件
订阅小程序
在清言上使用

Parametric Identification for the Biased Ship Roll Motion Model Using Genocchi Polynomials

Journal of mathematics(2022)

引用 1|浏览5
暂无评分
摘要
Roll motion is one of the key motions related to a vessel’s dynamic stability. It is essential for the dynamic stability of ships in the realistic sea. For this research study, we have investigated the parameters involved in damping of the ship. In general, mathematical modelling of the rolling response of a ship can be formulated by the linear, nonlinear, and fractional differential equations because the amplitude of oscillation is increased. An efficient Genocchi polynomial approximation method (GPAM) is successfully applied for the biased ship roll motion model. The basic idea of the collocation method together with the operational matrices of derivatives used for nonlinear differential equation and convert it into a system of algebraic equations. The convergence and error analysis of the proposed method are also discussed. A few numerical experiments are carried out for some specific and important types of problems including the biased roll motion equations. The results are compared to those produced using the Legendre wavelet method (LWM) and the homotopy perturbation method (HPM). It is observed that the proposed spectral algorithm is robust, accurate, and easy to apply.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要